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The ultimate physical limits of privacy
Artur Ekert1,2 & Renato Renner3

Among those who make a living from the science of secrecy, worry and paranoia are just signs of professionalism. Can we
protect our secrets against those who wield superior technological powers? Can we trust those who provide us with tools
for protection? Can we even trust ourselves, our own freedom of choice? Recent developments in quantum cryptog-
raphy show that some of these questions can be addressed and discussed in precise and operational terms, suggesting
that privacy is indeed possible under surprisingly weak assumptions.

E dgar Allan Poe, an American writer and an amateur cryptogra-
pher, once wrote ‘‘… it may be roundly asserted that human inge-
nuity cannot concoct a cipher which human ingenuity cannot

resolve …’’1. Is it true? Are we doomed to be deprived of our privacy, no
matter how hard we try to retain it? If the history of secret communi-
cation is of any guidance here, the answer is a resounding ‘yes’. There is
hardly a shortage of examples illustrating how the most brilliant efforts
of code-makers were matched by the ingenuity of code-breakers2. Even
today, the best that modern cryptography can offer are security reduc-
tions, telling us, for example, that breaking RSA, one of the most widely
used public key cryptographic systems, is at least as hard as factoring
large integers3. But is factoring really hard? Not with quantum technology.
Indeed, RSA, and many other public key cryptosystems, will become inse-
cure once a quantum computer is built4. Admittedly, that day is probably
decades away, but can anyone prove, or give any reliable assurance, that
it is? Confidence in the slowness of technological progress is all that the
security of our best ciphers now rests on.

This said, the requirements for perfectly secure communication are
well understood. When technical buzzwords are stripped away, all we
need to construct a perfect cipher is shared private randomness, more
precisely, a sequence of random bits known as a ‘cryptographic key’. Any
two parties who share the key, we call them Alice and Bob (not their real
names, of course), can then use it to communicate secretly, using a simple
encryption method known as the one-time pad5. The key is turned into a
meaningful message by one party telling the other, in public, which bits of
the key should be flipped. An eavesdropper, Eve, who has monitored the
public communication and knows the general method of encryption but
not the key will not be able to infer anything useful about the message. It is
vital though that the key bits be truly random, never reused, and securely
delivered to Alice and Bob, who may be miles apart. This is not easy, but
it can be done, and one can only be amazed how well quantum physics
lends itself to the task of key distribution.

Quantum key distribution, proposed independently by Bennett and
Brassard6 and by Ekert7, derives its security either from the Heisenberg
uncertainty principle (certain pairs of physical properties are comple-
mentary in the sense that knowing one property necessarily precludes
knowledge about the other) or the monogamy of quantum entanglement
(certain quantum correlations cannot be arbitrarily shared). At first, the
idea of using quantum phenomena to improve secrecy was nothing more
than an academic curiosity, but over time, with the progress of quantum
technologies, it was embraced by experimental physicists and eventually
turned into a viable commercial proposition. But even though quantum
cryptography can offer the best security available at present, it is not immune
to attacks exploiting botched implementations (see, for example, refs 8–11

for practical illustrations). The flaws in the design may be unintentional,
the result of ignorance or negligence on the part of some honest indivi-
duals who design quantum cryptosystems; but they can also be malicious,
secretly implanted by powerful adversaries. Should we not then dissect
our cryptographic devices, analyse them and make sure that they do exactly
what they are supposed to do? Given that some of the flaws may be unknown
to us, what exactly should we be looking for? It has long been believed that
here we reach the limits of privacy, and that at this point whoever is more
technologically advanced, be it the NSA, GCHQ or some other agency,
has the upper hand. Surprisingly, this is not the case.

Recent research shows that privacy is possible under stunningly weak
assumptions. All we need are monogamous correlations and a little bit of
‘free will’, here defined as the ability to make choices that are indepen-
dent of everything pre-existing and are hence unpredictable12,13. Given
this, we can entertain seemingly implausible scenarios. For example, devices
of unknown or dubious provenance, even those that are manufactured
by our enemies, can be safely used to generate and distribute secure keys.
There are caveats, of course: the devices must be placed in well-isolated
locations to prevent any leaks of the registered data, and the data must be
analysed by a trusted entity. Barring this, once the devices pass a certain
statistical test they can be purchased without any knowledge of their inter-
nal working. This is a truly remarkable feat, also referred to as ‘device-
independent’ cryptography14–20. Needless to say, proving security under such
weak assumptions, with all the mathematical subtleties, is considerably more
challenging than in the case of trusted devices, but the rapid progress in the
past few years has been very encouraging, making device-independent cryp-
tography one of the most active areas of quantum information science.

In fact, some of the device-independent schemes do not even rely on
the validity of quantum theory21–24, and they therefore guarantee security
against adversaries who may have access to superior, ‘post-quantum’, tech-
nologies. The adversaries may even be given control over the choices made
by Alice and Bob during the key distribution protocol25. As long as this
control is not complete, Alice and Bob can do something about it. It turns
out that ‘free will’ or, more specifically, the ability to make unpredictable,
and, therefore, random, choices can be amplified26. Randomness ampli-
fication has recently triggered a flurry of research activity, culminating in
a striking result: anything that is not completely deterministic can be made
completely random27,28. This means, as we explain below, that as long as
some of our choices are random and beyond control of the powers that
be, we can keep our secrets secret.

The power of free choice
If there is one encryption method that comes close to a perfect cipher, it
is the one-time pad. As we have already explained, its security critically

1Mathematical Institute, University of Oxford, Oxford OX2 9GG, UK. 2Centre for Quantum Technologies, National University of Singapore, 117543 Singapore. 3Institute for Theoretical Physics, ETH Zurich,
8093 Zurich, Switzerland.

0 0 M O N T H 2 0 1 4 | V O L 0 0 0 | N A T U R E | 1

www.nature.com/doifinder/10.1038/nature13132


relies on the randomness and secrecy of the cryptographic key. There is a
snag, however, known as the ‘key distribution problem’. Each key bit can
be used only once, to encrypt one single message bit. To maintain their
private communication, Alice and Bob must find a way to generate and
distribute fresh key bits continuously. But how?

Let us put all the practicalities aside, just for a moment, and dream
about something that would solve the key distribution problem. For
example, imagine that Alice and Bob were given two magically linked
coins, which always come out the same side up—either two heads or two
tails—with equal probabilities. Alice and Bob can then toss such coins
at their respective locations, writing ‘0’ for heads and ‘1’ for tails. The
resulting binary strings will be random and identical, but will they be
secret? Not necessarily. Technologically superior Eve could have manu-
factured an additional coin, magically linked to the coins held by Alice and
Bob. The three coins always tally and Eve knows all the bits in the string.

Clearly, to achieve secrecy we must let Alice and Bob do something
that is beyond Eve’s control. For example, Alice and Bob may be given a
choice between two different coins; Alice can toss either coin A1 or coin
A2 and Bob, either B1 or B2. For each toss they must choose one of the
two; tossing both A1 and A2 or both B1 and B2 is forbidden. Suppose,
again, that the coins are magically linked; Alice and Bob’s coins always
come out the same, except when they toss A1 and B2, which always come
out opposite. The magic can be succinctly summarized by the following
four conditions29,30 (Fig. 1):

A1~B1, B1~A2, A2~B2, B2=A1 ð1Þ
These conditions are clearly contradictory; it is impossible to assign
values to A1, A2, B1 and B2 so that all the four conditions are satisfied.
But remember, Alice and Bob can toss only one coin each, and thus
they can test only one of the four conditions in equation (1) at a time.
Unperformed tosses do not have outcomes, and, hence, there is no
contradiction here.

What if, say, Alice could break the rule and toss both of her coins, A1

and A2, in one go? It turns out that she would deprive Bob of his free
choice. Suppose that Alice tossed first (correlations are not affected by
the chronological order of the tosses) and that her outcomes are such
that A1 5 A2. Then Bob has no choice but to toss B1, because this is the
only choice compatible with the conditions in equation (1). Similarly, if
A1 ? A2, the only choice left to Bob is to toss B2. This simple argument
implies that the magic coins cannot be cloned. Having a clone, Z, of, say,
A1 (such that Z 5 A1), and being able to toss it together with A2 would
lead to the same contradictions as tossing both A1 and A2. The existence
of Z deprives Bob of his free choice. The conclusion is that if Alice and
Bob have free choice then the magic correlations must be monogamous,
that is, nothing else can be correlated to their coins. This turns the tables
on Eve. Neither she nor anyone else can manufacture a coin that will
always tally with any of the coins held by Alice or Bob. All ingredients for
secure key distribution are now in place.

Key distribution
To establish a cryptographic key, Alice and Bob toss their magic coins. For
each toss, Alice and Bob choose randomly, and independently of each

other, which particular coin will be tossed: Alice is choosing between A1

and A2, and Bob, between B1 and B2. After the toss, they announce pub-
licly the coins they selected, but not the outcomes they registered. The
outcomes are secret, because the coins cannot be cloned, and identical,
because the coins are magically linked (except when A1 and B2 are tossed,
in which case either Bob or Alice must flip his or her bit). The net result
is that Alice and Bob share one secret bit. To establish a longer key, they
simply repeat this procedure as many times as required.

We note that Alice and Bob do not need to make any assumptions about
the provenance of the coins; as long as the coins comply with the conditions
in equation (1), they are as good as it gets and could have been manufactured
by anyone, adversaries included. But this compliance has to be checked.
Alice and Bob can do it, for example, by revealing the outcomes of some
randomly chosen tosses and checking if they agree with equation (1).
Such publicly disclosed tosses are then discarded and the key is composed
from the remaining tosses, outcomes of which have never been revealed
in public. If Alice and Bob notice a deviation from the magic correlations,
they abort the key distribution and try again with another set of coins.

Here we have tacitly assumed that Alice and Bob can communicate in
public, but in such a way that nobody can alter their messages; for example,
they might use a radio broadcast or an advert in a newspaper, or some
other way that prevents impersonations. This communication is passively
monitored by Eve and is the only information she gathers during the key
distribution, because the coins are tossed in well-isolated locations that
prevent any leaks of the registered outcomes. Given this, the secrecy of the
key is based solely on the monogamy of the magic correlations and on one
innocuous but essential assumption: both Alice and Bob can freely choose
which coins to toss.

It seems that we have already achieved our goal. There is only one
little problem with our, otherwise impeccable, solution of the key distri-
bution problem, which is that the magic correlations do not exist. That
is, we do not know of any physical process that can generate them. But all
is not lost, because there are physically admissible correlations that are
‘magical’ enough for our purposes. Welcome to the quantum world!

The quantum of solace
Quantum theory is believed to govern all objects, large and small, but its
consequences are most conspicuous in microscopic systems such as indi-
vidual atoms or photons. Take, for example, polarized photons. Millions
of identically polarized photons form the familiar polarized light, but at
the quantum level polarization is an intrinsic property of each photon,
corresponding to its spin. Although the polarization of a single photon
can be measured along any direction, the outcome of the measurement
has only two values, indicating whether the polarization is parallel or
orthogonal to the measurement direction. For our purposes, we will label
these outcomes 0 and 1.

A number of quantum optical techniques can be employed to gen-
erate pairs of polarization-entangled photons. Such photons respond to
measurements, carried out on each of them separately, in a very coordi-
nated manner. Suppose that Alice and Bob measure the polarizations of
their respective photons along different directions, a and b. It turns out
that, although the values 0 and 1 are equally likely to appear, Alice and
Bob’s outcomes tally with the probability

cos2(a{b) ð2Þ
This is just about everything you need to know about quantum physics
for now.

Let us now replace the coin tosses by appropriately chosen polarization
measurements: instead of tossing coin A1, Alice simply measures her photon
along a1 5 0; and instead of tossing A2, she measures the photon along
a2 5 2p/8. Similarly, Bob replaces his coin tosses B1 and B2 by measure-
ments along directions b1 5p/8 and b2 5 3p/8, respectively. The resulting
joint probabilities of all possible outcomes, obtained using equation (2)
and the specified polarization angles, are shown in Table 1.

From a more general perspective, for any value of e, which can be con-
sidered the probability of deviation from the magic correlations, the

A1 B1

Alice Bob

A2 B2

Figure 1 | Magic correlations. Alice and Bob choose and toss one coin each.
Their choices are free, random and independent of each other, and the coins
always come out the same way up, except when they toss A1 and B2, which
always come out the opposite way up (represented by the red wiggly lines). Such
correlations cannot be shared with a third party; for example, nobody can
manufacture a coin that will always tally with any of the coins held by Alice
or Bob.
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table describes ‘non-signalling’ correlations: Alice, by choosing between
A1 and A2, cannot communicate any information to Bob, and vice versa
Bob choosing between B1 and B2 cannot send any information to Alice.
Neither of them can see through the statistics of the outcomes what the
other one is doing. Correlations with e $ 1/4 are called ‘classical’, because
they admit pre-assigned values of A1, A2, B1 and B2. This is no longer the
case when e , 1/4, because any pre-assignment is bound to violate at least
one of the four conditions in equation (1). Surprisingly, as we have just
seen, there are physically admissible correlations for which e can reach
sin2(p/8) < 0.146, which is the lowest value that can be achieved with quan-
tum correlations31. Even though perfect magic correlations, with e 5 0,
do not exist, there is still some magic left in quantum correlations, and it
can be exploited.

Less reality, more security
The impossibility of assigning numerical values to certain physical quan-
tities, for example the different polarizations of a photon, has been baffling
physicists for almost a century32. After all, most of us grew up holding
it self-evident that there is an objective reality in which physical objects
have properties that can be quantified and whose values exist regardless
of whether we measure them or not. Shocking as it may be, our world is
not of this kind. Statistical inequalities, such as e $ 1/4, derived on the
assumption that the values of unmeasured physical quantities do exist
and commonly referred to as Bell’s inequalities33, have been violated in a
number of painstaking experiments34–44. We shall not dwell on the philo-
sophical implications of this experimental fact (volumes have been written
on the subject), but simply point out that it should be embraced by all
those who worry about secrecy because what does not exist cannot be eaves-
dropped, and so it is much easier to keep secrets in a non-classical world.

Indeed, given the correlations parameterized by e, it can be shown that
the probability of Eve guessing correctly any particular outcome cannot
exceed (1 1 4e)/2 (Box 1). Eve may know something about the outcomes
(which is not good) but Alice and Bob, after running a statistical test and
estimating e, know how much she may know (which is good). If e is low
enough, this allows them to distil an almost perfect key from the out-
comes, using a technique known as ‘privacy amplification’.45,46 The basic
idea behind privacy amplification is quite simple. Imagine that you have
two bits and that you know your adversary knows at most one of them,
but that you do not know which one. Add the two bits together (mod-
ulo 2); the resulting bit will be secret. Needless to say, given more bits,
there are more sophisticated ways of achieving secrecy, to mention only
two-universal hash functions47 or Trevisan’s extractor48.

In summary, whenever Alice and Bob are given any devices that gen-
erate correlated outcomes, they can run the key distribution protocol
supplemented by a statistical ‘honesty test’ to estimate e. If this value is
small enough, say e 5 0.15, the end result, after privacy amplification, is
a perfect cryptographic key. We obtain trusted privacy from untrusted
devices, but what constitutes a device? We need to sort out one more
thing before we can celebrate the arrival of the ultimate cipher. Should

Alice and Bob trust the ultimate measuring and controlling devices; that
is, should they trust themselves?

Should we trust ourselves?
We can hardly get more paranoid than that. Can we make free choices or
are we held to the ransom of a greater force? In other words, what if we
are manipulated?

We have already stressed the power of free choice. Decisions such as
which coin to toss and which polarization to measure must be made
freely (randomly) and independently. If referring to the experimenter’s
‘free will’ sounds too esoteric, then think about the random number gen-
erators that in practical implementations make such choices. Where is

Table 1 | Approximating magic correlations
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Joint probabilities of binary outcomes given the choices of Ai and Bj (i, j 5 1, 2). The parameter e takes
the value 0 for the magic correlations (see equation (1)). The lowest physically admissible value,
e 5 sin2(p/8) < 0.146, can be obtained by measuring polarizations of appropriately entangled photons
at some specific angles, for example 0, p/8, 2p/8 and 3p/8, corresponding to A1, B1, A2 and B2,
respectively.

BOX 1

Eavesdropping quantified
Suppose that Eve wants to manufacture a device that outputs binary
values, Z, designed to tallywith, say,A1. Regardlessof her technological
prowess, Eve has limitedchances to succeed. For any twooutcomes, Ai

and Bj, the probabilities that they are equal to Z, that is, Pr(Z 5 Ai) and
Pr(Z 5 Bj), cannot differ by more than Pr(Ai ? Bj). This implies a
sequence of inequalities:

Pr (Z~A1){ Pr (Z~B1)ƒ Pr (A1=B1)

Pr (Z~B1){ Pr (Z~A2)ƒ Pr (B1=A2)

Pr (Z~A2){ Pr (Z~B2)ƒ Pr (A2=B2)

Pr (Z~B2){ Pr (Z=A1)ƒ Pr (B2~A1)

Adding these inequalities together and taking into account that
Pr(Z ? A1) 5 1–Pr(Z 5 A1) gives

Pr (Z~A1)ƒ
1
2

(1zI2)

where the quantity I2 5 Pr(A1 ? B1) 1 Pr(B1 ? A2) 1 Pr(A2 ? B2) 1

Pr(B2 5 A1) is the sum of the probabilities that any of the conditions in
equation (1) is violated. The derivation presented here works for any Ai

and Bj, and, it is worth stressing, does not involve quantum theory.
Although the values A1, A2, B1 and B2 do not coexist, all the

probabilitiesused here involveonlypairs of values, Ai and Bj, which can
be measured simultaneously. They can be determined from the
statistics of the experimental data. For the polarization measurements
described in the text, we would obtain I2 5 4e where e 5 sin2(p/8) <
0.146. The bound thus asserts that Pr(Z 5 A1) # 0.793; that is, Eve’s
value, Z, will deviate from A1 in more than 20% of the cases.

The notion of magic correlations can be extended to cases where
Aliceand Bob choose between n $ 2differentmeasurements67,68, with
the conditions in equation (1) replaced by

A1~B1, B1~A2, . . . , An~Bn, Bn=A1 ð3Þ

To approximate such correlations, Alice and Bob may use entangled
photons and measure polarizations Ai and Bj, specified by angles ai

and bj. These angles are chosen to be even and odd multiples of p/4n,
respectively, so that the adjacent values of ai and bj are p/4n radians
apart. Then, according to equation (2), each of the conditions in
equation (3) is satisfied, except with an error probability of
en 5 sin2(p/4n), 1/n2. It can thenbeshown, by the sameargumentsas
for then 52case, thatanyattemptbyEvetocomputeaprediction,Z, for
the outcome of, say, A1, can succeed with probability at most (11 In)/2,
where In 5 Pr(A1 ? B1) 1Pr(B1 ?A2) 1 � � �1 Pr(An ?Bn) 1Pr(Bn 5 A1).
For any classical correlations, In $ 1. In contrast, quantum theory
admits correlations such that In 5 2nen , 2/n. Consequently, in the
limit of largen, theprobability ofEveguessing thevalueofA1 correctly
becomes1/2; that is,A1 isuniformly randomand independentof any
information held by Eve. This observation is not only relevant for key
distribution21, but has been crucial for randomness amplification26.
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their randomness coming from? What if these random number generators
are of dubious provenance, possibly manufactured by the same person
who offered the key distribution kit? It is evident that without random-
ness there is no privacy: if everything is pre-determined, and all possible
choices we make (with the help of tweaked random number generators or
otherwise) are predictable or pre-programmed by our adversaries, then
there is nothing that we can build our privacy on. Or is there?

There is if the manipulation is not complete and there is a little bit of
freedom left. If someone we trust tells us that such and such a fraction of
the choices made by our random number generators cannot be determined
by the adversary, then privacy is still possible because local randomness can
be amplified26. Randomness amplification can itself be done with device-
independent protocols, and it works even if the fraction of initial random-
ness is arbitrarily small or the devices are noisy27,28.

It all looks bizarre and too good to be true. Perfect privacy, secure against
powerful adversaries who provide us with cryptographic tools and who
may even manipulate us? Is such a thing possible? Yes, it is, but ‘the devil
is in the detail’ and we need to look into some practicalities.

Practicalities
Quantum key distribution, in which security is tested by the degree of
violation of Bell’s inequalities, was proposed some time ago7 and was fol-
lowed shortly by a proof-of-principle experiment at what used to be called
the Defence Research Agency (now Qinetiq) in Malvern, UK49. However,
the device-independent character of this protocol has not been recog-
nized until recently15. Moreover, proving the security of such a scheme in
the presence of noise has not been easy. It has taken over a decade to agree
on a useful definition of secrecy, even for trusted devices, and to conclude
a long sequence of steadily improved security results50–53 that eventually
took into account all the quantum resources that Eve can muster54. Deal-
ing with untrusted devices is even more tricky and keeps many of our col-
leagues busy55–57.

Although all security proofs infer secrecy from the monogamy of the
correlations, a major challenge is to make these arguments quantitative
and robust to noise and imperfections, and applicable to keys of finite
size58,59. There are other issues as well. For example, here we have taken
for granted that Alice and Bob can estimate the parameter e from a suf-
ficiently large sample of their registered data. In the quantum domain, a
statement of that kind requires a quantum version of what is known in
classical statistics as de Finetti’s theorem54,60. It guarantees that, for instance,
pairs of photons can be treated as individual objects with individual prop-
erties and without any hidden correlations to other pairs. These, and
many other results, addressed a number of subtleties and, finally, twenty
years after its inception, the original entanglement-based key distribu-
tion protocol7 has been shown to offer security even if the devices are not
fully trusted and are exposed to noise15–20. This is assuming that quantum
theory is all that there is, and that Eve is bound by the laws of quantum
physics. However, if Alice and Bob are paranoid enough to give Eve some
‘post-quantum’ powers (technologies more powerful than quantum tech-
nologies which may rely on as-yet undiscovered physical phenomena that
are not described by quantum physics), they can still resort to less efficient
protocols that do not rely on quantum theory21–24. We should stress, how-
ever, that device-independent protocols and their security proofs have
not yet reached the level of sophistication that is now common for the device-
dependent scenario. In particular, more work is needed to improve the effi-
ciency of the key distribution protocols or to identify conditions under which
untrusted devices may be reused in multiple rounds of such protocols.

Given that violation of Bell’s inequality is an experimental fact, what is
it that prevents us from running the experiments that violated Bell’s
inequality again, but this time under the label of the device-independent
key distribution? Convincing as they are, these experiments still leave
some loopholes. For example, it is in principle possible that the photons
detected in the experiments did not represent a fair sample of all photons
emitted by the source (the ‘detection loophole’) or that the various parts
and components of the experiment were causally connected (the ‘local-
ity loophole’). Some of these concerns were addressed in more recent

experiments43,44, but, a single experiment that closes all the loopholes at
once, demonstrating the ultimate violation of Bell’s inequality, is still lacking.

This is not so disturbing for physicists, because nature would have to be
very malicious if it were to cheat us selectively—on locality in some experi-
ments and in exploring detection loopholes in some other. In contrast,
there is nothing to prevent an eavesdropper being malicious. In this adver-
sarial setting, a proper experimental demonstration of device-independent
cryptography requires a proper violation of Bell’s inequalities. This is
particularly true for the detection loophole. Imagine, for example, that
Eve pre-programmed the devices assuming in advance a sequence of
settings that Alice and Bob may choose for their measurements. When-
ever her guess is correct, the devices will respond with pre-programmed
results, and when it is not, one of the devices will simulate failure to respond.
If Alice and Bob naively discard all the instances in which at least one of
the devices failed to deliver a result, then they can be easily fooled by Eve.
Thus, we do need the loophole-free violation of Bell’s inequalities.

Closing the detection loop-hole is very challenging, because almost any
optical component adds losses and imperfections to the key distribution
set-up, but it is within the reach of today’s technology, especially with the
rapid progress in photodetection techniques. If distance is not an issue,
then we can achieve near-perfect detection efficiency using entangled ions
rather than photons40, and this has been used to generate the first device-
independent certified randomness61,62. Short of full device independence,
we can also entertain intermediate scenarios, where some parts of the devices
are trusted and some are not. Indeed, proposals that address issues such
as untrusted detectors63,64 offer significant improvements over the exist-
ing quantum key distribution schemes65,66 and move secure communi-
cation in interesting new directions.

Experimental device-independent cryptography is far from easy, but
technological progress so far has encouraged optimism. The days we stop
worrying about untrustworthy or incompetent providers of cryptographic
services may be not that far away.

Conclusion
Over the past decade or so, quantum cryptography has come of age, but
the field is still an amazingly fertile source of inspiration for fundamental
research. The search for the ultimate physical limits of privacy is still very
much a work in progress, but we know that privacy is possible under sur-
prisingly weak assumptions. Monogamous correlations, of whatever ori-
gin, and an arbitrarily small amount of free will are sufficient to conceal
whatever we like. Free will is our most valuable asset. Come to think about
it, without free will, there is no point in concealing anything anyway.
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